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Abstract
Triangular Lie algebras are the Lie algebras which can be faithfully represented
by triangular matrices of any finite size over the real/complex number field.
In the paper invariants (‘generalized Casimir operators’) are found for three
classes of Lie algebras, namely those which are either strictly or non-strictly
triangular, and for so-called special upper triangular Lie algebras. Algebraic
algorithm of Boyko et al (2006 J. Phys. A: Math. Gen. 39 5749 (Preprint
math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math.
Theor. 40 113 (Preprint math-ph/0606045)), is used to determine the invariants.
A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen. 34
9085), concerning the number of independent invariants and their form, is
corroborated.

PACS numbers: 02.20.−a, 02.20.Sv, 02.40.−k, 02.40.Vh, 03.65.Fd
Mathematics Subject Classification: 17B05, 17B10, 17B30, 22E70, 58D19,
81R05

1. Introduction

The invariants of Lie algebras are one of their defining characteristics. They have numerous
applications in different fields of mathematics and physics, in which Lie algebras arise
(representation theory, integrability of Hamiltonian differential equations, quantum numbers,
etc). In particular, the polynomial invariants of a Lie algebra exhaust its set of Casimir
operators, i.e., the centre of its universal enveloping algebra. That is why non-polynomial
invariants are also called generalized Casimir operators, and the usual Casimir operators are
seen as ‘trivial’ generalized Casimir operators. Since the structure of invariants strongly
depends on the structure of the algebra and the classification of all (finite-dimensional) Lie
algebras is an inherently difficult problem (actually unsolvable), it seems to be impossible to
elaborate a complete theory for generalized Casimir operators in the general case. Moreover,
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if the classification of a class of Lie algebras is known, then the invariants of such algebras
can be described exhaustively. These problems have already been solved for the semi-simple
and low-dimensional Lie algebras, and also for the physically relevant Lie algebras of fixed
dimensions (see, e.g., references in [3, 7, 8, 18, 19]).

The actual problem is the investigation of generalized Casimir operators for classes of
solvable Lie algebras or non-solvable Lie algebras with non-trivial radicals of arbitrary finite
dimension. There are a number of papers on the partial classification of such algebras and
the subsequent calculation of their invariants [1, 6, 7, 14–16, 20–23]. In particular, Tremblay
and Winternitz [22] classified all the solvable Lie algebras with the nilradicals isomorphic
to the nilpotent algebra t0(n) of strictly upper triangular matrices for any fixed dimension n.
Then in [23] invariants of these algebras were considered. The case n = 4 was investigated
exhaustively. After calculating the invariants for a sufficiently large value of n, Tremblay
and Winternitz made conjectures for an arbitrary n on the number and form of functionally
independent invariants of the algebra t0(n), and the ‘diagonal’ solvable Lie algebras having
t0(n) as their nilradicals and possessing either the maximal (equal to n − 1) or minimal (one)
number of nilindependent elements. A statement on a functional basis of invariants was only
proved completely for the algebra t0(n). The infinitesimal invariant criterion was used for
the construction of the invariants. Such an approach entails the necessity of solving a system
of ρ first-order linear partial differential equations, where ρ has the order of the algebra’s
dimension. This is why the calculations were very cumbersome and results were obtained due
to the thorough mastery of the method.

In this paper, we use our original algebraic method for the construction of the invariants
(‘generalized Casimir operators’) of Lie algebras via the moving frames approach [3, 4].
The algorithm makes use of the knowledge of the associated inner automorphism groups
and Cartan’s method of moving frames in its Fels–Olver version [9, 10]. (For modern
developments about the moving frame method and more references, see also [17].) Unlike
standard infinitesimal methods, it allows us to avoid solving systems of differential equations,
replacing them instead by algebraic equations. As a result, the application of the algorithm is
simpler. Note that a closed approach was earlier proposed in [12, 13, 19] for the specific case
of inhomogeneous algebras.

The invariants of three classes of triangular Lie algebras are exhaustively investigated
(below n is an arbitrary integer):

• nilpotent Lie algebras t0(n) of n × n strictly upper triangular matrices (section 3);
• solvable Lie algebras t(n) of n × n upper triangular matrices (section 4);
• solvable Lie algebras st(n) of n × n special upper triangular matrices (section 5).

The triangular algebras are especially interesting due to their ‘universality’ properties. More
precisely, any finite-dimensional nilpotent Lie algebra is isomorphic to a subalgebra of t0(n).
Similarly, any finite-dimensional solvable Lie algebra over an algebraically closed field of
characteristic 0 (e.g., over C) can be embedded as a subalgebra in t(n) (or st(n)).

We have adapted and optimized our algorithm for the specific case of triangular Lie
algebras via special double enumeration of basis elements, individual choice of coordinates
in the corresponding inner automorphism groups and an appropriate modification of the
normalization procedure of the moving frame method. As a result, the problems related to the
construction of functional bases of invariants are reduced for the algebras t0(n) and t(n) to
solving linear systems of algebraic equations! Let us note that due to the natural embedding
of st(n) to t(n) and the representation t(n) = st(n) ⊕ Z(t(n)), where Z(t(n)) is the centre of
t(n), we can construct a basis in the set of invariants of st(n) without the usual calculations
from a previously found basis in the set of invariants of t(n).
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We re-prove the statement for a basis of invariants of t0(n), which was first constructed in
[23] using the infinitesimal method in a heuristic way, thereafter constructed in [4] using an
empiric technique based on the exclusion of parameters within the framework of the algebraic
method. The aim of this paper in considering t0(n) is to test and better understand the technique
of working with triangular algebras. The calculations for t(n) are similar, albeit more complex,
although they are much clearer and easier than under the standard infinitesimal approach.

As proved in [22], there is a unique algebra with the nilradical t0(n) that contains a
maximum possible number (n−1) of nilindependent elements. A conjecture on the invariants
of this algebra is formulated in proposition 1 of [23]. We show that this algebra is isomorphic
to st(n). As a result, the conjecture by Tremblay and Winternitz on its invariants is effectively
proved.

2. The algorithm

The applied algebraic algorithm was first proposed in [3] and then developed in [4]. Ibid it
was effectively tested for the low-dimensional Lie algebras and a wide range of solvable Lie
algebras with a fixed structure of nilradicals. The presentation of the algorithm here differs
from [3, 4], the differences being important within the framework of applications.

For convenience of the reader and to introduce some necessary notations, before the
description of the algorithm, we briefly repeat the preliminaries given in [3, 4] about the
statement of the problem of calculating Lie algebra invariants, and on the implementation of
the moving frame method [9, 10]. The comparative analysis of the standard infinitesimal and
the presented algebraic methods, as well as their modifications, is given in the second part of
this section.

Consider a Lie algebra g of dimension dim g = n < ∞ over the complex or real field and
the corresponding connected Lie group G. Let g∗ be the dual space of the vector space g. The
map Ad∗ : G → GL(g∗), defined for any g ∈ G by the relation

〈Ad∗
gx, u〉 = 〈x, Adg−1u〉 for all x ∈ g∗ and u ∈ g

is called the coadjoint representation of the Lie group G. Here Ad : G → GL(g) is the usual
adjoint representation of G in g, and the image AdG of G under Ad is the inner automorphism
group Int(g) of the Lie algebra g. The image of G under Ad∗ is a subgroup of GL(g∗) and is
denoted by Ad∗

G.
A function F ∈ C∞(g∗) is called an invariant of Ad∗

G if F(Ad∗
gx) = F(x) for all g ∈ G

and x ∈ g∗. The set of invariants of Ad∗
G is denoted by Inv(Ad∗

G). The maximal number
Ng of functionally independent invariants in Inv(Ad∗

G) coincides with the codimension of the
regular orbits of Ad∗

G, i.e., it is given by the difference

Ng = dim g − rank Ad∗
G.

Here rank Ad∗
G denotes the dimension of the regular orbits of Ad∗

G and will be called the rank
of the coadjoint representation of G (and of g). It is a basis independent characteristic of the
algebra g, the same as dim g and Ng.

To calculate the invariants explicitly, one should fix a basis E = {e1, . . . , en} of the
algebra g. It leads to fixing the dual basis E∗ = {e∗

1, . . . , e
∗
n} in the dual space g∗ and to

the identification of Int(g) and Ad∗
G with the associated matrix groups. The basis elements

e1, . . . , en satisfy the commutation relations [ei, ej ] = ∑n
k=1 ck

ij ek, i, j = 1, . . . , n, where ck
ij

are components of the tensor of structure constants of g in the basis E .
Let x → x̌ = (x1, . . . , xn) be the coordinates in g∗ associated with E∗. Given any

invariant F(x1, . . . , xn) of Ad∗
G, one finds the corresponding invariant of the Lie algebra g by
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symmetrization, Sym F(e1, . . . , en), of F. It is often called a generalized Casimir operator
of g. If F is a polynomial, Sym F(e1, . . . , en) is a usual Casimir operator, i.e., an element of the
centre of the universal enveloping algebra of g. More precisely, the symmetrization operator
Sym acts only on the monomials of the forms ei1 · · · eir , where there are non-commuting
elements among ei1 , . . . , eir , and is defined by the formula

Sym
(
ei1 · · · eir

) = 1

r!

∑
σ∈Sr

eiσ1
· · · eiσr

,

where i1, . . . , ir take values from 1 to n, r � 2. The symbol Sr denotes the permutation group
consisting of r elements. The set of invariants of g is denoted by Inv(g).

A set of functionally independent invariants F l(x1, . . . , xn), l = 1, . . . , Ng, forms a
functional basis (fundamental invariant) of Inv(Ad∗

G), i.e., any invariant F(x1, . . . , xn) can be
uniquely represented as a function of F l(x1, . . . , xn), l = 1, . . . , Ng. Accordingly the set of
Sym F l(e1, . . . , en), l = 1, . . . , Ng, is called a basis of Inv(g).

Our task here is to determine the basis of the functionally independent invariants for Ad∗
G,

and then to transform these invariants into the invariants of the algebra g. Any other invariant
of g is a function of the independent ones.

Let us recall some facts from [9, 10] and adapt them to the particular case of the coadjoint
action of G on g∗. Let G = Ad∗

G × g∗ denote the trivial left principal Ad∗
G-bundle over g∗.

The right regularization R̂ of the coadjoint action of G on g∗ is the diagonal action of Ad∗
G on

G = Ad∗
G×g∗. It is provided by the map R̂g(Ad∗

h, x) = (Ad∗
h ·Ad∗

g−1 , Ad∗
gx), g, h ∈ G, x ∈ g∗,

where the action on the bundleG = Ad∗
G×g∗ is regular and free. We call R̂g the lifted coadjoint

action of G. It projects back to the coadjoint action on g∗ via the Ad∗
G-equivariant projection

πg∗ : G → g∗. Any lifted invariant of Ad∗
G is a (locally defined) smooth function from G to

a manifold, which is invariant with respect to the lifted coadjoint action of G. The function
I : G → g∗ given by I = I(Ad∗

g, x) = Ad∗
gx is the fundamental lifted invariant of Ad∗

G,
i.e., I is a lifted invariant, and any lifted invariant can be locally written as a function of I.
Using an arbitrary function F(x) on g∗, we can produce the lifted invariant F ◦ I of Ad∗

G by
replacing x with I = Ad∗

gx in the expression for F. Ordinary invariants are particular cases of
lifted invariants, where one identifies any invariant formed as its composition with the standard
projection πg∗ . Therefore, ordinary invariants are particular functional combinations of lifted
ones that happen to be independent of the group parameters of Ad∗

G.
The algebraic algorithm for finding invariants of the Lie algebra g is briefly formulated

in the following four steps.

(1) Construction of the generic matrix B(θ) of Ad∗
G. B(θ) is the matrix of an inner

automorphism of the Lie algebra g in the given basis e1, . . . , en, θ = (θ1, . . . , θr ) is
a complete tuple of group parameters (coordinates) of Int(g), and r = dim Ad∗

G =
dim Int(g) = n − dim Z(g), where Z(g) is the centre of g.

(2) Representation of the fundamental lifted invariant. The explicit form of the fundamental
lifted invariant I = (I1, . . . , In) of Ad∗

G in the chosen coordinates (θ, x̌) in Ad∗
G × g∗ is

I = x̌ · B(θ), i.e., (I1, . . . , In) = (x1, . . . , xn) · B(θ1, . . . , θr ).
(3) Elimination of parameters by normalization. We choose the maximum possible number

ρ of lifted invariants Ij1 , . . . , Ijρ
, constants c1, . . . , cρ and group parameters θk1 , . . . , θkρ

such that the equations Ij1 = c1, . . . , Ijρ
= cρ are solvable with respect to θk1 , . . . , θkρ

.
After substituting the found values of θk1 , . . . , θkρ

into the other lifted invariants, we obtain
Ng = n − ρ expressions F l(x1, . . . , xn) without θ ’s.

(4) Symmetrization. The functions F l(x1, . . . , xn) necessarily form a basis of Inv(Ad∗
G).

They are symmetrized to Sym F l(e1, . . . , en). It is the desired basis of Inv(g).
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Let us give some remarks on the steps of the algorithm, mainly paying attention to
the special features of its variation in this paper, and where it differs from the conventional
infinitesimal method.

Usually, the second canonical coordinate on Int(g) is enough for the first step, although
sometimes, the first canonical coordinate on Int(g) is the more appropriate choice. In both
the cases, the matrix B(θ) is calculated by exponentiation from matrices associated with the
structure constants. Often the parameters θ are additionally transformed in a trivial manner
(signs, renumbering, re-denotation, etc) for simplification of the final presentation of B(θ). It is
also sometimes convenient for us to introduce ‘virtual’ group parameters corresponding to the
centre basis elements. Efficient exploitation of the algorithm imposes certain constrains on the
choice of bases for g, in particular, in the enumeration of their elements; thus automatically
yielding simpler expressions for elements of B(θ) and, therefore, expressions of the lifted
invariants. In some cases the simplification is considerable.

In contrast with the general situation, for the triangular Lie algebras we use special
coordinates for their inner automorphism groups, which naturally harmonize with the canonical
matrix representations of the corresponding Lie groups and with special ‘matrix’ enumeration
of the basis elements. The application of the individual approach results in the clarification
and a substantial reduction of all calculations. In particular, algebraic systems solved under
normalization become linear with respect to their parameters.

Since B(θ) is a general form matrix from Int(g), it should not be adapted in any way for
the second step.

Indeed, the third step of the algorithm can involve different techniques of elimination of
parameters which are also based on using an explicit form of lifted invariants [3, 4]. The
applied normalization procedure [9, 10] can also be subject to some variations and can be
applied in a more involved manner.

As a rule, in complicated cases the main difficulty is created by the determination of the
number ρ, who is actually equal to rank Ad∗

G, which is equivalent to finding the maximum
number Ng of functionally independent invariants in Inv(Ad∗

G), since Ng = dim g−rank Ad∗
G.

The rank ρ of the coadjoint representation Ad∗
G can be calculated in different ways, e.g., by

the closed formulae

ρ = max
x̌∈R

n
rank

( n∑
k=1

ck
ij xk

)n

i,j=1

, ρ = max
x̌∈R

n
max
θ∈R

r
rank

∂I
∂θ

or with the use of indirect argumentation. The first formula is native to the infinitesimal
approach to invariants (see, e.g., [5, 16, 18, 23] and other references) since it gives the
number of algebraically independent differential equations in the linear system of first-order
partial differential equations

∑n
j,k=1 ck

ij xkFxj
= 0, which arises under this approach and is the

infinitesimal criterion for invariants of the algebra g under the fixed basisE . The second formula
shows that rank Ad∗

G coincides with the maximum dimension of a nonsingular submatrix in
the Jacobian matrix ∂I/∂θ . The tuples of lifted invariants and parameters associated with this
submatrix are appropriate for the normalization procedure, where the constants c1, . . . , cρ are
chosen to lie in the range of values of the corresponding lifted invariants.

If ρ is known then the sufficient number (Ng = dim g − ρ) of functionally independent
invariants can be found with various ‘empiric’ techniques in the frameworks of both the
infinitesimal and algebraic approaches. For example, expressions of candidates for invariants
can be deduced from invariants of similar low-dimensional Lie algebras and then tested via
substitution to the infinitesimal criterion for invariants. It is the method used in [23] to describe
invariants of the Lie algebra t0(n) of strictly upper triangular n × n matrices for any fixed
n � 2. In the framework of the algebraic approach, invariants can be constructed via the
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combination of lifted invariants in expressions not depending on the group parameters [9, 10].
This method was applied, in particular, to low-dimensional algebras and the algebra t0(n)

[3, 4]. Other empiric techniques, e.g., based on commutator properties [2] also can be used.
At the same time, a basis of Inv(Ad∗

G) may be constructed without first determining
the number of basis elements. Since under such consideration the infinitesimal approach
leads to the necessity of the complete integration of the partial differential equations from
the infinitesimal invariant criterion, the domain of its applicability seems quite narrow (low-
dimensional algebras and Lie algebra of special simple structure). A similar variation of the
algebraic method is based on the following obvious statement.

Proposition 1. Let I = (I1, . . . , In) be a fundamental lifted invariant, for the lifted invariants
Ij1 , . . . , Ijρ

and some constants c1, . . . , cρ the system Ij1 = c1, . . . , Ijρ
= cρ be solvable with

respect to the parameters θk1 , . . . , θkρ
and substitution of the found values of θk1 , . . . , θkρ

into
the other lifted invariants result in m = n − ρ expressions Îl , l = 1, . . . , m, depending only
on x’s. Then ρ = rank Ad∗

G,m = Ng and Î1, . . . , Îm form a basis of Inv(Ad∗
G).

Our experience on the calculation of invariants of a wide range of Lie algebras shows that
the version of the algebraic method, which is based on proposition 1, is most effective. It is
the version that is used in this paper.

Note that the normalization procedure is difficult to be made algorithmic. There is a
big ambiguity in the choice of the normalization equations. We can take different tuples
of ρ lifted invariants and ρ constants, which lead to systems solvable with respect to ρ

parameters. Moreover, lifted invariants can be additionally combined before forming a system
of normalization equations or substitution of found values of parameters. Another possibility
is to use a floating system of normalization equations (see section 6.2 of [4]). This means that
elements of an invariant basis are constructed under different normalization constraints. The
choice of an optimal method results in a considerable reduction of calculations and a practical
form of constructed invariants.

3. Nilpotent algebra of strictly upper triangular matrices

Consider the nilpotent Lie algebra t0(n) isomorphic to the one of the strictly upper triangular
n×n matrices over the field F, where F is either C or R. t0(n) has dimension n(n−1)/2. It is
the Lie algebra of the Lie group T0(n) of upper unipotent n× n matrices, i.e., upper triangular
matrices with entries equal to 1 in the diagonal.

As mentioned above, the basis of Inv(t0(n)) was first constructed in a heuristic way in
[23] within the framework of the infinitesimal approach. This result was re-obtained in [4]
with the use of the pure algebraic algorithm first proposed in [3] and developed in [4]. Also, it
is the unique example included among the wide variety of solvable Lie algebras investigated
in [4], in which the ‘empiric’ technique of excluding group parameters from lifted invariants
was applied. Although this technique was very effective in constructing a set of functionally
independent invariants (calculations were reduced via a special representation of the coadjoint
action to a trivial identity using matrix determinants, see note 2), the main difficulty was in
proving that the set of invariants is a basis of Inv(t0(n)), i.e. cardinality of the set equals the
maximum possible number of functionally independent invariants. Under the infinitesimal
approach [23] the main difficulty was the same.

In this section, we construct a basis of Inv(t0(n)) with the algebraic algorithm but exclude
group parameters from lifted invariants by the normalization procedure. In contrast with
the previous expositions (section 3 of [23] and section 8 of [4]), sufficiency of the number
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of found invariants for forming a basis of Inv(t0(n)) is proved in the process of calculating
them. Investigation of Inv(t0(n)) in this way gives us a sense of the specific features of the
normalization procedure in the case of Lie algebras having nilradicals isomorphic (or closed)
to t0(n).

For the algebra t0(n) we use a ‘matrix’ enumeration of the basis elements with an
‘increasing’ pair of indices, in a similar way to the canonical basis

{
En

ij , i < j
}

of the
isomorphic matrix algebra.

Hereafter En
ij (for fixed values of i and j ) denotes the n × n matrix (δii ′δjj ′) with i ′ and j ′

running the numbers of rows and column respectively, i.e., the n×n matrix with a unit element
on the cross of the ith row and the j th column, and zero otherwise. En = diag(1, . . . , 1) is
the n × n unity matrix. The indices i, j, k and l run at most from 1 to n. Only additional
constraints on the indices are indicated.

Thus, the basis elements eij ∼ En
ij , i < j , satisfy the commutation relations

[eij , ei ′j ′] = δi ′j eij ′ − δij ′ei ′j ,

where δij is the Kronecker delta.
Let e∗

ji , xji and yij denote the basis element and the coordinate function in the dual space
t∗0(n) and the coordinate function in t0(n), which correspond to the basis element eij , i < j .
In particular, 〈e∗

j ′i ′, eij 〉 = δii ′δjj ′. The reverse order of subscripts of the objects associated
with the dual space t∗0(n) is justified by the simplification of a matrix representation of lifted
invariants. We complete the sets of xji and yij in the matrices X and Y with zeros. Hence X is
a strictly lower triangular matrix and Y is a strictly upper triangular one.

We reproduce lemma 1 from [4] together with its proof, since it is important for further
consideration.

Lemma 1. A complete set of independent lifted invariants of Ad∗
T0(n) is exhaustively given by

the expressions

Iij = xij +
∑
i<i ′

bii ′xi ′j +
∑
j ′<j

bj ′j xij ′ +
∑

i<i ′,j ′<j

bii ′ b̂j ′j xi ′j ′ , j < i,

where B = (bij ) is an arbitrary matrix from T0(n), and B−1 = (̂bij ) is the inverse matrix
of B.

Proof. The adjoint action of B ∈ T0(n) on the matrix Y is AdBY = BYB−1, i.e.,

AdB

∑
i<j

yij eij =
∑
i<j

(BYB−1)ij eij =
∑

i�i ′<j ′�j

bii ′yi ′j ′ b̂j ′j eij .

After changing eij → xji, yij → e∗
ji , bij ↔ b̂ij in the latter equality, we obtain the

representation of the coadjoint action of B

Ad∗
B

∑
i<j

xjie
∗
ji =

∑
i�i ′<j ′�j

bj ′j xji b̂ii ′e
∗
j ′i ′ =

∑
i ′<j ′

(BXB−1)j ′i ′e
∗
j ′i ′ .

Therefore, the elements Iij , j < i, of the matrix I = BXB−1, B ∈ T0(n), form a complete
set of the independent lifted invariants of Ad∗

T0(n). �

Note 1. The centre of the group T0(n) is Z(T0(n)) = {En + b1nE
n
1n, b1n ∈ F}. The inner

automorphism group of t0(n) is isomorphic to the factor-group T0(n)/Z(T0(n)) and hence
its dimension is 1

2n(n − 1) − 1. The parameter b1n in the above representation of the lifted
invariants is not essential.
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Below A
i1,i2
j1,j2

, where i1 � i2, j1 � j2, denotes the submatrix (aij )
i=i1,...,i2
j=j1,...,j2

of a matrix
A = (aij ). The conjugate value of k with respect to n is denoted by �, i.e. � = n − k + 1. The
standard notation |A| = det A is used.

Theorem 1. A basis of Inv
(
Ad∗

T0(n)

)
consists of the polynomials∣∣X�,n

1,k

∣∣, k = 1, . . . ,
[n

2

]
.

Proof. Under normalization we impose the following restriction on the lifted invariants
Iij , j < i:

Iij = 0 if j < i, (i, j) �= (n − j ′ + 1, j ′), j ′ = 1, . . . ,
[n

2

]
.

It means that we do not only fix the values of the elements of the lifted invariant
matrix I, which are situated on the secondary diagonal, under the main diagonal. The other
significant elements of I are given the value 0. As shown below, the chosen normalization is
correct since it provides satisfying the conditions of proposition 1.

In view of the (triangular) structure of the matrices B and X the formula I = BXB−1,
determining the lifted invariants implies that BX = IB. This matrix equality is also significant
for the matrix elements underlying the main diagonals of the left- and right-hand sides, i.e.,

xij +
∑
i<i ′

bii ′xi ′j = Iij +
∑
j ′<j

Iij ′bj ′j , j < i.

For convenience we divide the latter system under the chosen normalization conditions into
four sets of subsystems

Sk
1 : x�j +

∑
i ′>�

b�i ′xi ′j = 0, i = �, j < k, k = 2, . . . ,
[n

2

]
,

Sk
2 : x�k +

∑
i ′>�

b�i ′xi ′k = I�k, i = �, j = k, k = 1, . . . ,
[n

2

]
,

Sk
3 : x�j +

∑
i ′>�

b�i ′xi ′j = I�kbkj , i = �, k < j < �, k = 1, . . . ,
[n

2

]
− 1,

Sk
4 : xkj +

∑
i ′>k

bki ′xi ′j = 0, i = k, j < k, k = 2, . . . ,

[
n + 1

2

]
,

and solve them one by one. The subsystem S1
2 consists of the single equation In1 = xn1 which

gives the simplest form of the invariant corresponding to the centre of the algebra t0(n). For
any fixed k ∈ {2, . . . , [n/2]} the subsystem Sk

1 ∪Sk
2 is a well-defined system of linear equations

with respect to b�i ′ , i
′ > �, and I�k . Solving it, e.g., by the Cramer method, we obtain that

b�i ′ , i
′ > �, are expressions of xi ′j , i

′ > �, j < k, the explicit form of which is not essential
in what follows, and

I�k = (−1)k+1

∣∣X�,n
1,k

∣∣∣∣X�+1,n
1,k−1

∣∣ , k = 2, . . . ,
[n

2

]
.

The combination of the found values of I�k results in the invariants from the statement of the
theorem. The functional independence of these invariants is obvious.

After substituting the expressions of I�k and b�i ′ , i
′ > �, via x’s, into Sk

3 , we trivially
resolve Sk

3 with respect to bkj as an uncoupled system of linear equations. In performing the
subsequent substitution of the calculated expressions for bkj to Sk

4 , for any fixed k, we obtain
a well-defined system of linear equations, e.g., with respect to bki ′ , i

′ > �.



Invariants of triangular Lie algebras 7565

Under the normalization we express the non-normalized lifted invariants via x’s and find
a part of the parameters b’s of the coadjoint action via x’s and the other b’s. No equations
involving only x’s are obtained. In view of proposition 1, this implies that the choice of the
normalization constraints is correct and, therefore, the number of functionally independent
invariants found is maximal, i.e., they form a basis of Inv

(
Ad∗

T0(n)

)
. �

Corollary 1. A basis of Inv(t0(n)) is formed by the Casimir operators

det(eij )
i=1,...,k
j=n−k+1,...,n, k = 1, . . . ,

[n

2

]
.

Proof. Since the basis elements corresponding to the coordinate functions from the constructed
basis of Inv

(
Ad∗

T0(n)

)
commute, the symmetrization procedure is trivial. �

Note 2. The set of the invariants from theorem 1 can be easily found from the equality
I = BXB−1 by the following empiric trick used in lemma 2 from [4]. For any fixed
k ∈ {1, . . . , [n/2]} we restrict the equality to the submatrix with the row range �, . . . , n and
the column range 1, . . . , k: I�,n

1,k = B�,n
�,nX

�,n
1,k (B−1)

1,k
1,k . Since

∣∣B�,n
�,n

∣∣ = ∣∣(B−1)
1,k
1,k

∣∣ = 1, we
obtain

∣∣I�,n
1,k

∣∣ = ∣∣X�,n
1,k

∣∣, i.e.,
∣∣X�,n

1,k

∣∣ is an invariant of Ad∗
T0(n) in view of the definition of an

invariant. Functional independence of the constructed invariants is obvious. The proof of
Nt0(n) = [n/2] is much more difficult (see lemma 3 of [4]).

4. Solvable algebra of upper triangular matrices

In a way analogous to the previous section, consider the solvable Lie algebra t(n) isomorphic
to one of the upper triangular n × n matrices. t(n) has dimension n(n + 1)/2. It is the Lie
algebra of the Lie group T (n) of nonsingular upper triangular n × n matrices.

Its basis elements are convenient to enumerate with a ‘non-decreasing’ pair of indices in
a similar way to the canonical basis

{
En

ij , i � j
}

of the isomorphic matrix algebra. Thus, the
basis elements eij ∼ En

ij , i � j , satisfy the commutation relations

[eij , ei ′j ′] = δi ′j eij ′ − δij ′ei ′j ,

where δij is the Kronecker delta.
Hereafter the indices i, j, k and l again run at most from 1 to n. Only additional constraints

on the indices are indicated.
The centre of t(n) is one-dimensional and coincides with the linear span of the sum

e11 + · · ·+enn corresponding to the unity matrix En. The elements eij , i < j , and e11 + · · ·+enn

form a basis of the nilradical of t(n), which is isomorphic to t0(n) ⊕ a. Here a is the
one-dimensional (Abelian) Lie algebra.

Let e∗
ji , xji and yij denote the basis element and the coordinate function in the dual space

t∗(n) and the coordinate function in t(n), which correspond to the basis element eij , i � j .
Thus, 〈e∗

j ′i ′, eij 〉 = δii ′δjj ′. We complete the sets of xji and yij in the matrices X and Y with
zeros. Hence X is a lower triangular matrix and Y is an upper triangular one.

Lemma 2. A fundamental lifted invariant of Ad∗
T (n) is formed by the expressions

Iij =
∑

i�i ′,j ′�j

bii ′ b̂j ′j xi ′j ′ , j � i,

where B = (bij ) is an arbitrary matrix from T (n), and B−1 = (̂bij ) is the inverse matrix of B.
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Proof. The adjoint action of B ∈ T (n) on the matrix Y is AdBY = BYB−1, i.e.

AdB

∑
i�j

yij eij =
∑
i�j

(BYB−1)ij eij =
∑

i�i ′�j ′�j

bii ′yi ′j ′ b̂j ′j eij .

After changing eij → xji, yij → e∗
ji , bij ↔ b̂ij in the latter equality, we obtain the

representation for the coadjoint action of B

Ad∗
B

∑
i�j

xjie
∗
ji =

∑
i�i ′�j ′�j

bj ′j xji b̂ii ′e
∗
j ′i ′ =

∑
i ′�j ′

(BXB−1)j ′i ′e
∗
j ′i ′ .

Therefore, the elements Iij , j � i, of the matrix

I = BXB−1, B ∈ T (n),

form a complete set of the independent lifted invariants of Ad∗
T (n). �

Note 3. The centre of the group T (n) is Z(T (n)) = {βEn | β ∈ F/{0}}. If F = C then the
group T (n) is connected. In the real case the connected component T+(n) of the unity in T (n)

is formed by the matrices from T (n) with positive diagonal elements, i.e., T+(n) � T (n)
/

Z
n
2,

where Z
n
2 = {diag(ε1, . . . , εn) | εi = ±1}. The inner automorphism group Int(t(n)) of t(n)

is isomorphic to the factor-group T (n)/Z(T (n)) (or T+(n)/Z(T (n)) if F is real) and hence
its dimension is 1

2n(n + 1) − 1. The value of one from the diagonal elements of the matrix B
or a homogenous combination of them in the above representation of lifted invariants can be
assumed inessential. It is evident from the proof of theorem 2 that in all cases, the invariant
sets of the coadjoint representations of Int(t(n)) and t(n) coincide.

Let us remind that A
i1,i2
j1,j2

, where i1 � i2, j1 � j2, denotes the submatrix (aij )
i=i1,...,i2
j=j1,...,j2

of a
matrix A = (aij ). The conjugate value of k with respect to n is denoted by �, i.e. � = n−k+1.

Under the proof of the below theorem the following technical lemma on matrices is used.

Lemma 3. Suppose 1 < k < n. If |X�+1,n
1,k−1| �= 0 then for any β ∈ F

(
β − X

i,i
1,k−1

(
X

�+1,n
1,k−1

)−1
X

�+1,n
j,j

) = (−1)k+1∣∣X�+1,n
1,k−1

∣∣
∣∣∣∣∣X

i,i
1,k−1 β

X
�+1,n
1,k−1 X

�+1,n
j,j

∣∣∣∣∣ .
In particular,

(
x�k − X

�,�
1,k−1

(
X

�+1,n
1,k−1

)−1
X

�+1,n
k,k

) = (−1)k+1
∣∣X�+1,n

1,k−1

∣∣−1∣∣X�,n
1,k

∣∣. Analogously(
x�j − X

�,�
1,k−1

(
X

�+1,n
1,k−1

)−1
X

�+1,n
j,j

)(
xjk − X

j,j

1,k−1

(
X

�+1,n
1,k−1

)−1
X

�+1,n
k,k

)
= 1∣∣X�+1,n

1,k−1

∣∣
∣∣∣∣∣X

j,j

1,k β

X
�,n
1,k X

�,n
j,j

∣∣∣∣∣ +

∣∣X�,n
1,k

∣∣∣∣X�+1,n
1,k−1

∣∣2

∣∣∣∣∣X
j,j

1,k−1 β

X
�+1,n
1,k−1 X

�+1,n
j,j

∣∣∣∣∣ .
Theorem 2. A basis of Inv(Ad∗

T (n)) is formed by the rational expressions

1∣∣X�,n
1,k

∣∣
�−1∑

j=k+1

∣∣∣∣∣X
j,j

1,k xjj

X
�,n
1,k X

�,n
j,j

∣∣∣∣∣ , k = 0, . . . ,

[
n − 1

2

]
,

where
∣∣Xn+1,n

1,0

∣∣ := 1.

Proof. We choose the following normalization restriction on the lifted invariants Iij , j � i:

In−j+1,j = 1, j = 1, . . . ,
[n

2

]
,

Iij = 0 if j � i, (i, j) �= (j ′, j ′), (n − j ′ + 1, j ′), j ′ = 1, . . . ,

[
n + 1

2

]
.
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This means that we do not only fix the values of the elements of the lifted invariant matrix I,
which are situated on the main diagonal over or on the secondary diagonal. The elements
of the secondary diagonal underlying the main diagonal are given a value of 1. The other
significant elements of I are given a value 0. As shown below, the imposed normalization
provides satisfying the conditions of proposition 1 and, therefore, is correct.

Similarly to the case of strictly triangular matrices, in view of the (triangular) structure of
the matrices B and X the formula I = BXB−1 determining the lifted invariants implies that
BX = IB. This matrix equality is significant for the matrix elements lying not over the main
diagonals of the left and right hand sides, i.e.,∑

i�i ′
bii ′xi ′j =

∑
j ′�j

Iij ′bj ′j , j � i.

For convenience we again divide the latter system under the chosen normalization conditions
into four sets of subsystems

Sk
1 :

∑
i ′��

b�i ′xi ′j = 0, i = �, j < k, k = 2, . . . ,
[n

2

]
,

Sk
2 :

∑
i ′��

b�i ′xi ′j = bkj , i = �, k � j � �, k = 1, . . . ,
[n

2

]
,

Sk
3 :

∑
i ′�k

bki ′xi ′j = 0, i = k, j < k, k = 2, . . . ,

[
n + 1

2

]
,

Sk
4 :

∑
i ′�k

bki ′xi ′k = bkkIkk, i = k, j < k, k = 1, . . . ,

[
n + 1

2

]
,

and solve them one by one. The subsystem S1
2 consists of the equations

b1j = bnnxnj

which are already solved with respect to b1j . For any fixed k ∈ {2, . . . , [n/2]} the subsystem
Sk

1 ∪ Sk
2 is a well-defined system of linear equations with respect to b�i ′ , i

′ > �, and
bkj , k � j � �. We can solve the subsystem Sk

1 with respect to b�i ′ , i
′ > �:

B
�,�
�+1,n = −b��X

�,�
1,k−1

(
X

�+1,n
1,k−1

)−1
,

and then substitute the obtained values into the subsystem Sk
2 . Another way is to find the

expressions for bkj , k � j � �, by the Cramer method, from the whole system Sk
1 ∪Sk

2 at once
since only these parameters are further considered. As a result, they have two representations
via b�� and x’s:

bkj = b��

(
x�j − X

�,�
1,k−1

(
X

�+1,n
1,k−1

)−1
X

�+1,n
j,j

) = (−1)k+1b��∣∣X�+1,n
1,k−1

∣∣
∣∣∣∣∣X

�,�
1,k−1 x�j

X
�+1,n
1,k−1 X

�+1,n
j,j

∣∣∣∣∣ ,
where k � j � �. In particular,

bkk = (−1)k+1b��

∣∣X�+1,n
1,k−1

∣∣−1∣∣X�,n
1,k

∣∣.
Analogously, for any fixed k ∈ {2, . . . , [(n + 1)/2]} the subsystem Sk

3 is a well-defined system
of linear equations with respect to bkj , j > �, and it implies

B
k,k
�+1,n = −

∑
k�j��

bkjX
j,j

1,k−1

(
X

�+1,n
1,k−1

)−1
.
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Substituting the found expressions for b’s into the equations of the subsystems Sk
4 , we

completely exclude the parameters b’s and obtain expressions of Ikk only via x’s. Thus,
under k = 1

I11 = 1

b11

∑
i

b1ixi1 = bnn

b11

∑
i

xnixi1 = 1

xn1

∑
i

xnixi1 = 1

xn1

∑
i

∣∣∣∣xi1 xii

xn1 xni

∣∣∣∣ +
∑

i

xii ,

where the summation range in the first sum can be bounded by 2 and n − 1 since for i = 1
and i = n the determinants are equal to 0. In the case k ∈ {2, . . . , [(n + 1)/2]}
bkkIkk =

∑
k�i

bkixik =
∑

k�j��

bkjxjk +
∑
�<i

bkixik =
∑

k�i��

bkj

(
xjk − X

j,j

1,k−1

(
X

�+1,n
1,k−1

)−1
X

�+1,n
k,k

)

= b��

∑
k�i��

(
x�j − X

�,�
1,k−1

(
X

�+1,n
1,k−1

)−1
X

�+1,n
j,j

)(
xjk − X

j,j

1,k−1

(
X

�+1,n
1,k−1

)−1
X

�+1,n
k,k

)
.

After using the representation for bnn and manipulations with submatrices of X (see lemma 3),
we derive that

Ikk = (−1)k+1∣∣X�,n
1,k

∣∣ ∑
k�i��

∣∣∣∣∣X
i,i
1,k xii

X
�,n
1,k X

�,n
i,i

∣∣∣∣∣ +
(−1)k+1∣∣X�+1,n

1,k−1

∣∣ ∑
k�i��

∣∣∣∣∣X
i,i
1,k−1 xii

X
�+1,n
1,k−1 X

�+1,n
i,i

∣∣∣∣∣ ,
where k = 2, . . . , [(n + 1)/2]. The summation range in the first sum can be taken from k + 1
and � − 1 since for i = k and i = � the determinants are equal to 0.

The combination of the found values of Ikk in the following way

Ĩ00 =
[ n+1

2 ]∑
j=1

Ijj =
∑

i

xii , Ĩkk = (−1)k+1Ikk − Ĩk−1,k−1, k = 1, . . . ,

[
n − 1

2

]
,

results in the invariants Ĩk′k′, k′ = 0, . . . , [(n − 1)/2], from the statement of the theorem. The
functional independence of these invariants is obvious.

Under the normalization we express the non-normalized lifted invariants via x’s and find
a part of the parameters b’s of the coadjoint action via x’s and the other b’s. No equations
involving only x’s are obtained. In view of proposition 1, this implies that the choice of the
normalization constraints is correct, i.e., the number of the found functionally independent
invariant is maximal and, therefore, they form a basis of Inv(Ad∗

T (n)). �

Note 4. An expanded form of the invariants from theorem 2 is

n∑
j=1

xjj ,

n−1∑
j=2

∣∣∣∣xj1 xjj

xn1 xnj

∣∣∣∣
xn1

,

n−2∑
j=3

∣∣∣∣∣∣
xj1 xj2 xjj

xn−1,1 xn−1,2 xn−1,j

xn1 xn2 xnj

∣∣∣∣∣∣∣∣∣∣xn−1,1 xn−1,2

xn1 xn2

∣∣∣∣
, . . . .

The first invariant corresponds to the centre of t(n). The invariant tuple ends with

∣∣∣X n−1
2 ,n

1, n+1
2

∣∣∣∣∣∣X n+1
2 ,n

1, n−1
2

∣∣∣ if n is odd and

n
2 +1∑
j= n

2

∣∣∣∣∣∣
X

j,j

1, n
2 −1 xjj

X
n
2 +2,n

1, n
2 −1 X

n
2 +2,n

j,j

∣∣∣∣∣∣∣∣∣X n
2 +2,n

1, n
2 −1

∣∣∣ if n is even.
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Corollary 2. A basis of Inv(t(n)) consists of the rational invariants

Îk = 1∣∣E1,k
�,n

∣∣
n−k∑

j=k+1

∣∣∣∣∣E
1,k
j,j E1,k

�,n

ejj Ej,j
�,n

∣∣∣∣∣ , k = 0, . . . ,

[
n − 1

2

]
,

where E i1,i2
j1,j2

, i1 � i2, j1 � j2, denotes the matrix (eij )
i=i1,...,i2
j=j1,...,j2

,
∣∣E1,0

n+1,n

∣∣ := 1, � = n − k + 1.

Proof. By expanding the determinants in any elements of the basis from theorem 2, we
obtain a rational expression for x’s. Each monomial in the numerator or the denominator
contains coordinate functions such that corresponding basis elements commute. Therefore,
the symmetrization procedure is trivial. Since xij ∼ eji, j < i, it is necessary to transpose the
matrices in the obtained expressions of invariants, in order to improve the representation. �

Note 5. The invariants from corollary 2 can be rewritten as

Îk = 1∣∣E1,k
�,n

∣∣
n−k∑

j=k+1

∣∣∣∣∣E
1,k
j,j E1,k

�,n

0 Ej,j
�,n

∣∣∣∣∣ + (−1)k+1
n−k∑

j=k+1

ejj , k = 0, . . . ,

[
n − 1

2

]
.

In particular, Î0 = ∑
j ejj .

5. Solvable algebra of special upper triangular matrices

The Lie algebra st(n) of the special (i.e., having zero traces) upper triangular n × n matrices
is imbedded in a natural way in t(n) as an ideal. dim st(n) = 1

2n(n + 1) − 1. Moreover,

t(n) = st(n) ⊕ Z(t(n)),

where Z(t(n)) = 〈e11 + · · · + enn〉 is the centre of t(n), which corresponds to the one-
dimensional Abelian Lie algebra of the matrices proportional to En. Due to this fact we can
construct a basis of Inv(st(n)) without the usual calculations involved in finding the basis of
Inv(t(n)). It is well known that if the Lie algebra g is decomposable into the direct sum of
Lie algebras g1 and g2 then the union of bases of Inv(g1) and Inv(g2) is a basis of Inv(g). A
basis of Inv(Z(t(n))) obviously consists of only one element, e.g., e11 + · · · + enn. Therefore,
the cardinality of the basis of Inv(st(n)) is equal to the cardinality of the basis of Inv(t(n))

minus 1, i.e., [(n − 1)/2]. To construct a basis of Inv(st(n)), it is enough for us to rewrite
[(n − 1)/2] functionally independent combinations of elements from a basis of Inv(t(n)) via
elements of st(n) and to exclude the central element from the basis.

The following basis in st(n) is chosen as a subalgebra of t(n):

eij , i < j, fk = n − k

n

k∑
i=1

eii − k

n

n∑
i=k+1

eii , k = 1, . . . , n − 1.

(Usage of this basis allows for the presentation of our results in such a form that their
identity with proposition 1 from [23] becomes absolutely evident.) The commutation relations
of st(n) in the chosen basis are

[eij , ei ′j ′] = δi ′j eij ′ − δij ′ei ′j , i < j, i ′ < j ′;
[fk, fk′ ] = 0, k, k′ = 1, . . . , n − 1;
[fk, eij ] = 0, i < j � k or k � i < j ;
[fk, eij ] = eij , i � k � j, i < j

and, therefore, coincide with those of the algebra L(n, n − 1) from [22], i.e., L(n, n − 1) is
isomorphic to st(n). Combining this observation with lemma 6 of [22] results in the following
theorem.
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Theorem 3. The Lie algebra st(n) has the maximal number of dimensions (equal to
1
2n(n + 1) − 1) among the solvable Lie algebras which have nilradicals isomorphic to t0(n).
It is the unique algebra with such a property.

Theorem 4. A basis of Inv(st(n)) consists of the rational invariants

Ǐk = (−1)k+1∣∣E1,k
�,n

∣∣
n−k∑

j=k+1

∣∣∣∣∣E
1,k
j,j E1,k

�,n

0 Ej,j
�,n

∣∣∣∣∣ + fk − fn−k, k = 1, . . . ,

[
n − 1

2

]
,

where E i1,i2
j1,j2

, i1 � i2, j1 � j2, denotes the matrix (eij )
i=i1,...,i2
j=j1,...,j2

,
∣∣E1,0

n+1,n

∣∣ := 1, � = n − k + 1.

Proof. It is enough to observe (see note 5) that

Ǐk = (−1)k+1Îk +
n − 2k

n
Î0, k = 1, . . . ,

[
n − 1

2

]
.

These combinations of elements from a basis of Inv(t(n)) are functionally independent. They
are expressed via elements of st(n). Their number is [(n−1)/2]. Therefore, they form a basis
of Inv(st(n)). �

6. Conclusion and discussion

In this paper, we extend our purely algebraic approach for computing invariants of Lie algebras
by means of moving frames [3, 4] to the classes of Lie algebras t0(n), t(n) and st(n) of
strictly, non-strictly and special upper triangular matrices of an arbitrary fixed dimension n.
In contrast to the conventional infinitesimal method which involves solving an associated
system of PDEs, the main steps of the applied algorithm are the construction of the matrix
B(θ) of inner automorphisms of the Lie algebra under consideration, and the exclusion of
the parameters θ from the algebraic system I = x̌ · B(θ) in some way. The version of the
algorithm, applied in this paper, is distinguished in that a special usage of the normalization
procedure when the number, and a form of elements in a functional basis of an invariant set,
are determined by excluding the parameters simultaneously.

A basis of Inv(t0(n)) was already known and constructed by both the infinitesimal method
[23] and the algebraic algorithm with an elegant but empiric technique of excluding the
parameters [4]. Note that the proof introduced in [23] is very sophisticated and was completed
only due to the thorough mastery of the used infinitesimal method. A form of elements from
a functional basis of Inv(t0(n)) was guessed via calculation of bases for a number of small n’s
and then justified with the infinitesimal method, and both the testing steps (on invariance and
on sufficiency of number) were quite complicated.

Invariants of t0(n) are considered in this paper in order to demonstrate the advantages of
the normalization technique and to pave the way for further applications of this technique to
the more complicated algebras t(n) and st(n), being too complex for the infinitesimal method
(only the lowest few were completely investigated there). First the invariants of the algebras
t(n) and st(n) are exhaustively studied in this paper. The performed calculations are simple
and clear since the normalization procedure is reduced by the choice of natural coordinates
on the inner automorphism groups and by the use of a special normalization technique
to solving a linear system of algebraic equations. The results obtained for Inv(st(n)) in
theorem 4 completely agree with the conjecture formulated as proposition 1 in [23] on the
number and form of basis elements of this invariant set.

A direct extension of the present investigation is to describe the invariants of the
subalgebras of st(n), which contain t0(n). Such subalgebras exhaust the set of solvable
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Lie algebras which can be embedded in the matrix Lie algebra gl(n) and have the nilradicals
isomorphic to t0(n). A technique similar to that used in this paper can be applied. The
main difficulties will be created by breaking in symmetry and complication of coadjoint
representations. The question on ways of investigation of the other solvable Lie algebras
with the nilradicals isomorphic to t0(n) remains open. (See, e.g., [22] for classification of the
algebras of such type.)

A more general problem is to circumscribe an applicability domain of the developed
algebraic method. It has been already applied only to the low-dimensional Lie algebras and a
wide range of classes of solvable Lie algebras in [3, 4] and this paper. The next step which
should be performed is the extension of the method to classes of unsolvable Lie algebras
of arbitrary dimensions, e.g., with fixed structures of radicals or Levi factors. An adjoining
problem is the implementation of the algorithm with symbolic calculation systems. Similar
work has already begun in the framework of the general method of moving frames, e.g.,
in the case of rational invariants for rational actions of algebraic groups [11]. Some other
possibilities on the applications of the algorithm are outlined in [4].
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